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Outline

1 Definition of Causal Effects and 2 Examples
2 Assumptions Needed to Identify Causal Effects from

Observed Data Distribution
3 Estimation Methods and Assumptions Needed for

Consistency of Estimators
4 Computing Standard Errors (using bootstrap)
5 Potential Challenges You May Encounter
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Definitions and Goal

• X=Baseline Variables, Z=Binary treatment or Exposure,
Y=Outcome.

• Observed Data Structure: (Xi ,Zi ,Yi) for each study
participant i = 1, . . . , n.

• Goal is to estimate the effect of the treatment/exposure on the
outcome.

• We focus on population average treatment effect
(abbreviated ATE), a contrast between what the mean
outcome would be if everyone in population were assigned
to treatment versus everyone assigned to control.

• Main challenges we address: how to account for measured
confounding

• We assume no unmeasured confounding (i.e., X contains all
confounders)
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Example 1

• Population: HIV infected individuals; Data from cohort study.

• X=age, sex, ART-naive; Z=Indicator of Adherence > 50% to
Antiretroviral Therapy during month; Y=Indicator of Virologic
Failure.

• Data structure: observe (Xi ,Zi ,Yi) for each study participant i
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Example 2

• Population: individuals with intracerebral hemorrhage (ICH);
data from randomized trial

• X=ICH volume, ICH location, age, NIH Stroke Scale;
Z=Indicator of Received Surgical Intervention; Y=Modified
Rankin Scale < 4 at 180 days.

• Data structure: observe (Xi ,Zi ,Yi) for each study participant i
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Main Challenge

• X=Baseline Variables, Z=Binary treatment or Exposure,
Y=Outcome.

• Observed Data Structure: (Xi ,Zi ,Yi) for each study
participant i = 1, . . . , n.

• Problem in observational study: those with Z=1 may not be
comparable to those with Z=0 in baseline characteristics
related to Y .

• Difference in sample proportions with Y = 1 comparing Z=1
and Z=0 groups can have confounding/selection bias for
estimating ATE.
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Need to Introduce Potential Outcomes

• Potential outcomes Y0,Y1, i.e., outcome under assignment
to Z = 0, 1, respectively.

• Goal is to estimate causal effect, e.g., difference of
proportions P[Y1 = 1]− P[Y0 = 1]
P[Y0 = 1] is population proportion under hypothetical
intervention where everyone assigned Z = 0.
P[Y1 = 1] is population proportion under hypothetical
intervention where everyone assigned Z = 1.

• The fundamental challenge of causal inference: only one of
Y0,Y1 is observed for each person, i.e., the one
corresponding to their Z value.

• Therefore, half the potential outcomes are missing. Goal is
inferences about Y0 and Y1 in a hypothetical population where
none of these missing.

• If there are confounders, then P[Y = 1|Z = 1] 6= P[Y1 = 1].
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Defining Causal Effect using Potential Outcomes

• Potential outcomes Y0,Y1, i.e., outcome under assignment
to Z = 0, 1, respectively.

• Goal is to estimate causal effect, e.g.,
risk difference P[Y1 = 1]− P[Y0 = 1],
risk ratio P[Y1 = 1]/P[Y0 = 1],
log odds ratio logit[P(Y1 = 1)]− logit[P(Y0 = 1)] where
logit(x) = log[x/(1− x)].

• Note: expit = logit−1.
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Note on Interpretation of Conditioning

• P[Y = 1|Z = 1] is read as “Probability of Y=1 GIVEN
(conditioned on) Z=1".

• “GIVEN" can be interpreted as “among those in the population
with" or "among strata with"

• P[Y = 1|Z = 1] is read as “Probability of Y equals 1 among
strata with Z=1"

• P[Y = 1|Z = 1,X = x ] is read as “Probability of Y=1 among
strata with Z=1, X=x"

• The above are population quantities, which we could in
principle learn by measuring (X ,Z ,Y ) on everyone in the
population; in practice we just get a sample from the
population and try to infer from this about the population.
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Assumptions

• X=Baseline Variables, Z=Binary treatment, Y=Outcome.

• Goal is to estimate causal effect, e.g., P[Y1 = 1]− P[Y0 = 1].
• Key assumptions that allow identifiability of causal effect

based on observed data distribution:
• Consistency: Y = YZ = (1− Z )Y0 + ZY1 (connects observed

and potential outcomes)
• Strong ignorability: Y0,Y1 independent of Z given X .

Also called: no unmeasured confounders assumption (i.e., X
has all confounders). Roughly speaking, confounder of effect
of Z on Y is a variable that impacts both.

• Experimental Treatment Assignment (ETA): P(Z|X)>0, i.e., no
stratum of X where exposure/non-exposure impossible.

• Assume each triple (Xi ,Zi ,Yi ) is independent, identically
distributed draw from unknown joint distribution PX ,Z ,Y .

• Let X denote all possible values of X .

• For clarity of presentation we estimate one of P[Y1 = 1],
P[Y0 = 1] at a time. Can then plug into the desired contrast.
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Identifiability of Causal Effects from Observational Data
Goal: Estimate P(Y1 = 1), which under the assumptions of
consistency and ignorability, equals∑

x∈X
P(Y = 1 | Z = 1,X = x)P(X = x).

This follows from:

P(Y1 = 1)

=
∑
x∈X

P(Y1 = 1 | X = x)P(X = x)

=
∑
x∈X

P(Y1 = 1 | X = x ,Z = 1)P(X = x) (by ignorability)

=
∑
x∈X

P(Y = 1 | X = x ,Z = 1)P(X = x) (by consistency).

We expressed P(Y1 = 1) in terms of observed data distribution.
©2017, Johns Hopkins University. All rights reserved
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Identifiability of Causal Effects from Observational Data

Goal: Estimate P(Y1 = 1), which under the assumptions of
consistency and ignorability, equals∑

x∈X
P(Y = 1 | Z = 1,X = x)P(X = x).

Can do similarly to estimate P(Y0 = 1) by changing to Z = 0 in
above.
Note: in general∑
x∈X

P(Y = 1 | Z = 1,X = x)P(X = x) 6= P(Y = 1|Z = 1).

This is because in general P(X = x |Z = 1) 6= P(X = x) due to
selection bias.
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Estimation
Goal: Estimate P(Y1 = 1), which was shown to equal∑

x∈X
P(Y = 1 | Z = 1,X = x)P(X = x).

1 Standardization (a.k.a. g-computation) Fit outcome regression
working model m1(X , α) for P(Y = 1 | Z = 1,X ). Estimator is
1
n

∑n
i=1 m1(Xi , α̂).

2 Inverse Probability Weighting (Horvitz-Thompson): Fit working
model g1(X , γ) for P(Z = 1 | X ). Estimator is
1
n

∑n
i=1 ZiYi/g1(Xi , γ̂).

3 Double Robust Estimator: Involves fitting both models. Many
options. E.g., if both models are logistic regression, first fit g1,
then fit m1 using weights 1/g1(Xi , γ̂) and denote fitted
coefficients by ᾱ. Estimator is 1

n

∑n
i=1 m1(Xi , ᾱ). (Due to

Marshall Joffe.)
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Estimation

Goal: Estimate P(Y1 = 1), which was shown to equal∑
x∈X

P(Y = 1 | X = x ,Z = 1)P(X = x).

Requirements for consistency of estimators:
1 Standardization (a.k.a. g-computation) Outcome regression

working model m1(X , α) for P(Y = 1 | Z = 1,X ) must be
correctly specified.

2 Inverse Probability Weighting: Propensity score working
model g1(X , γ) for P(Z = 1 | X ) must be correctly specified.

3 Double Robust Estimator: Involves fitting both models. At
least one working model must be correctly specified.

Note: our ultimate goal is to estimate causal effect, not coefficient
vectors α, γ. Causal effect is generally not equal to any of these
coefficients.
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Estimation

Goal: Estimate P(Y1 = 1), which was shown to equal∑
x∈X

P(Y = 1 | X = x ,Z = 1)P(X = x).

1 Standardization: Fit a logistic regression model m1(X , α) for
P(Y = 1 | Z = 1,X ) (using only those with Z = 1). Estimator
is 1

n

∑n
i=1 m1(Xi , α̂).

That is, the empirical average, over all subjects (even those
with Z = 0) of their predicted outcomes if they’d gotten
Z = 1, based only on their baseline variables Xi , using the
outcome regression model fit. For example, if you fit model

P(Y = 1|Z = 1,X ) = expit(α0 + α1X + α2X 2),

this estimator is: 1
n

∑n
i=1 expit(α̂0 + α̂1Xi + α̂2X 2

i ).
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Estimation

Goal: Estimate P(Y1 = 1), which was shown to equal∑
x∈X

P(Y = 1 | X = x ,Z = 1)P(X = x).

1 Inverse Weighted Estimator (also called IPW, IPTW): Fit a
logistic regression model g1(X , γ) for P(Z = 1|X ) using all
participants; this is called propensity score model. Estimator
is 1

n

∑n
i=1 ZiYi/g1(Xi , γ̂).

For example, if you fit model

P(Z = 1|X ) = expit(γ0 + γ1X + γ2X 2),

this estimator is: 1
n

∑n
i=1 ZiYi/expit(γ̂0 + γ̂1Xi + γ̂2X 2

i ).
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Estimation

Goal: Estimate P(Y1 = 1), which was shown to equal∑
x∈X

P(Y = 1 | X = x ,Z = 1)P(X = x).

1 Double Robust Estimator of Joffe: First fit propensity score
logistic regression model g1(X , γ). Next, fit outcome
regression logistic regression model m1(X , α) using weights
1/g1(Xi , γ̂) and denote fitted coefficients by ᾱ. Estimator is
1
n

∑n
i=1 m1(Xi , ᾱ).
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Estimation

Goal: Estimate P(Y1 = 1), which was shown to equal∑
x∈X

P(Y = 1 | X = x ,Z = 1)P(X = x).

Another Double Robust Estimator: Fit g1, then fit logistic
regression model m1 with additional term Z/g1(X , γ̂). Estimator is
1
n

∑n
i=1 m1(Xi , α̂).
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Computing Standard Errors for Various Estimators

Consider any of the above estimators we’ve discussed.
In general, can use nonparametric bootstrap to estimate the
standard error, when data has sample size n:

• Repeatedly (say, 10,000 times) resample n units with
replacement from your data set to created a replicated data
set of size n.

• Compute estimator on replicated data set.

• Compute the standard deviation of the 10,000 estimates–this
is the estimate of the standard error.

Note: for each replicated data set, when computing the estimator,
you should refit the models. This captures the variability due to the
model parameters being estimated rather than known a priori.
Recommendation: use BCa method for confidence interval.
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Potential Challenges

1 Very small estimated values of P(Z = z|X ); called “practical
Experimental Treatment Assignment violation". Leads to very
large weights. May need to truncate weights; or can modify
the quantity being estimated.

2 Too many variables to adjust for and not enough participants
n. Watch out for model overfit.

3 Assumption Violations (which can be hard or sometimes
impossible to detect)
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